DIFFERENTIATION

- 1 A curve is given by the parametric equations x = 2 + t, $y = t^2 - 1$. **a** Write down expressions for $\frac{dx}{dt}$ and $\frac{dy}{dt}$. **b** Hence, show that $\frac{dy}{dx} = 2t$. Find and simplify an expression for $\frac{dy}{dr}$ in terms of the parameter t in each case. 2 **a** $x = t^2$, y = 3t **b** $x = t^2 - 1$, $y = 2t^3 + t^2$ **c** $x = 2 \sin t$, $y = 6 \cos t$ **d** x = 3t - 1, $y = 2 - \frac{1}{t}$ **e** $x = \cos 2t$, $y = \sin t$ **f** $x = e^{t+1}$, $y = e^{2t-1}$ **g** $x = \sin^2 t$, $y = \cos^3 t$ **h** $x = 3 \sec t$, $y = 5 \tan t$ **i** $x = \frac{1}{t+1}$, $y = \frac{t}{t-1}$ 3 Find, in the form y = mx + c, an equation for the tangent to the given curve at the point with the given value of the parameter t. **a** $x = t^3$, $y = 3t^2$, t = 1 **b** $x = 1 - t^2$, $y = 2t - t^2$, t = 2**c** $x = 2 \sin t$, $y = 1 - 4 \cos t$, $t = \frac{\pi}{3}$ **d** $x = \ln (4 - t)$, $y = t^2 - 5$, t = 34 Show that the normal to the curve with parametric equations $x = \sec \theta, y = 2 \tan \theta, 0 \le \theta < \frac{\pi}{2},$ at the point where $\theta = \frac{\pi}{3}$, has the equation $\sqrt{3}x + 4y = 10\sqrt{3}$.
- 5 A curve is given by the parametric equations

$$x = \frac{1}{t}, \quad y = \frac{1}{t+2}.$$

- **a** Show that $\frac{dy}{dx} = \left(\frac{t}{t+2}\right)^2$.
- **b** Find an equation for the normal to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

6 A curve has parametric equations

$$x = \sin 2t, \quad y = \sin^2 t, \quad 0 \le t < \pi.$$

- **a** Show that $\frac{dy}{dx} = \frac{1}{2} \tan 2t$.
- **b** Find an equation for the tangent to the curve at the point where $t = \frac{\pi}{6}$.
- 7 A curve has parametric equations

$$x = 3\cos\theta, y = 4\sin\theta, 0 \le \theta < 2\pi.$$

a Show that the tangent to the curve at the point $(3 \cos \alpha, 4 \sin \alpha)$ has the equation

 $3y \sin \alpha + 4x \cos \alpha = 12.$

b Hence find an equation for the tangent to the curve at the point $\left(-\frac{3}{2}, 2\sqrt{3}\right)$.

continued

DIFFERENTIATION

8 A curve is given by the parametric equations

$$x = t^2$$
, $y = t(t - 2)$, $t \ge 0$.

a Find the coordinates of any points where the curve meets the coordinate axes.

b Find $\frac{dy}{dx}$ in terms of x

i by first finding $\frac{dy}{dx}$ in terms of t,

ii by first finding a cartesian equation for the curve.

9

The diagram shows the ellipse with parametric equations

$$x = 1 - 2\cos\theta, y = 3\sin\theta, 0 \le \theta < 2\pi.$$

- **a** Find $\frac{dy}{dx}$ in terms of θ .
- **b** Find the coordinates of the points where the tangent to the curve is
 - **i** parallel to the *x*-axis,
 - ii parallel to the y-axis.

10 A curve is given by the parametric equations

 $x = \sin \theta$, $y = \sin 2\theta$, $0 \le \theta \le \frac{\pi}{2}$.

- **a** Find the coordinates of any points where the curve meets the coordinate axes.
- **b** Find an equation for the tangent to the curve that is parallel to the *x*-axis.
- **c** Find a cartesian equation for the curve in the form y = f(x).
- 11 A curve has parametric equations

 $x = \sin^2 t$, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

- **a** Show that the tangent to the curve at the point where $t = \frac{\pi}{4}$ passes through the origin.
- **b** Find a cartesian equation for the curve in the form $y^2 = f(x)$.
- 12 A curve is given by the parametric equations

$$x = t + \frac{1}{t}, \quad y = t - \frac{1}{t}, \quad t \neq 0.$$

- **a** Find an equation for the tangent to the curve at the point *P* where t = 3.
- **b** Show that the tangent to the curve at *P* does not meet the curve again.
- **c** Show that the cartesian equation of the curve can be written in the form $x^2 y^2 = k$,

where *k* is a constant to be found.